REACTIONS OF SULFONIUM PHENACYLIDE WITH ACTIVE METHYLENE COMPOUNDS

Yasuji HARIGAYA, Tamotsu YAMAMOTO, and Makoto OKAWARA

Research Laboratory of Resources Utilization, Tokyo Institute

of Technology, Ookayama, Meguro-ku, Tokyo 152

The reaction of dimethylsulfonium phenacylide $\frac{1}{2}$ with malononitrile gave C-phenacylated compound. The reaction of $\frac{1}{2}$ with acetylacetone or ethyl acetoacetate led to dihydrofuran derivatives via O-phenacylation followed by cyclization.

Recently, we have described the reactions of S-N ylide with active methylene compounds to give stable S-C ylides via the nucleophilic substitution on S-atom. $^{1)}$ In this paper, for comparison of S-N with S-C ylide, the reactions of dimethylsulfonium phenacylide 1^{2} with several active methylene compounds have been described, and the results obtained were compared with the reactions of phenacyl bromide 4.

The reaction of 1 with an equimolar amount of malononitrile in THF at 40°C for 4 hr gave phenacylmalononitrile 3^{3} quantitatively. 3 was identified by comparison with the compound which was given by treatment of malononitrile with 4 in the presence of triethylamine in dichloromethane.

The reaction of 5.0 mmol of 1 with 2.0 ml of acetylacetone did not afford phenacylacetylacetone 8a, but dihydrofuran 6a quantitatively. In order to elucidate the structure of 6a, the attempted dehydration by heating(130°C, 1 hr) was performed to result in the formation of an expected furan 7a(87%). The reaction of 4, in turn, with acetylacetone in the presence of NEt $_3$ in CH_2Cl_2 gave 8a(67%) which was a phenacylated compound on the C-atom and cyclized to furan 9a in 98% yield in 20% sulfuric acid at 100°C.

Next, $\frac{1}{2}$ was allowed to react with ethyl acetoacetate under similar conditions to afford dihydrofuran $\frac{6}{2}$ in quantitative yield, $\frac{4}{3}$ and the dehydration of $\frac{6}{2}$ in 20% $\frac{1}{2}$ SO₄ at 100°C produced an expected furan $\frac{7}{2}$. The reaction of ethyl acetoacetate with $\frac{4}{2}$ in the presence of NaOEt or NEt₃ gave ethyl α -phenacylacetoacetate $\frac{8}{2}$ in 94% or 69% yield, respectively, which cyclized to furan $\frac{9}{2}$ in 20% $\frac{1}{2}$ SO₄ at 100°C.

In the above reactions, the phenacylide may behave as a base to accept a proton from an active methylene compound and the sulfonium ion 2 formed is subject to nucleophilic attack by the deprotonated methylene, which acts as an ambident nucleophile ($RC(=0)\bar{C}HX \Longrightarrow RC(-0^-)=CHX$). Thus, it seems reasonable that the methylene incapable of enolization gives only a C-phenacylated compound(3), and the enolizable methylene affords only an O-phenacylated compound(6). The reason for the remarkable difference between the reaction of 1 and 4 with enolizable methylene will be discussed elswhere.

In addition, these results may present a new synthetic route to substituted furan derivatives via the O-phenacylation of acetylacetone and ethyl acetoacetate.

References and notes

- 1) T.Yamamoto, Y.Harigaya, and M.Okawara, Chem. Lett., 1009 (1972).
- 2) K.W.Ratt and A.N.Yao, J. Org. Chem., 31, 1185, 1689 (1966).
- 3) All new compounds reported here gave satisfactory elemental analysis and consistent IR and NMR.
- 4) Y.Hayashi, T.Ohashi, T.Takemura, and R.Oda, The 24th Annual Meeting of the Chemical Society of Japan (1971). Although they reported the reaction of 1 with ethyl acetoacetate in benzene at room temperature to give 7b(41%), 8b(5%) and 9b(3%), the details are not clarified.

(Received November 22, 1973)